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Abstract The simulation of peptide folding with atomic res-
olution has evolved remarkably during the last 7 years, i.e.,
from absolute skepticism on the capability of classical
molecular dynamics (MD) methodology to reproduce com-
plex biological phenomena such as the folding of even simple
oligopeptides (6–15 residues) to the seemingly realistic rep-
resentation of the thermodynamics and kinetics of folding of
a rapidly increasing number of polypeptides (over 20 resi-
dues). Four factors permitted this rapid progress: the break-
through of a second generation of force fields, a rapid and
steady increase of (commodity) computer performance, a
move from local computational resources to large distrib-
uted clusters and, last but not less important, a decision of
particular groups to spend a large computational effort on
projects that most other groups trusted unrealizable at the
time. The present account goes over some aspects of peptide
folding and its simulation with MD techniques while sweep-
ing through the simulation landmarks of the last 7 years and
conjecturing on the future.

1 Introduction

Peptide chains exist in an equilibrium between different con-
formations as a function of environment – number of mole-
cules for each of the molecular species present in the system
– and thermodynamic – temperature, pressure – conditions.
If a peptide adopts a structurally ordered, densely populated
conformation, it is commonly said to have a folded state, iden-
tified with this conformer, in equilibrium with the unfolded
state, represented by diverse, sparsely populated conformers.
Although, in principle, this equilibrium exists for chains of
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any size, its thermodynamics and kinetics are typically differ-
ent for oligopeptides forming secondary structure elements,
polypeptides (over 20 residues) with some degree of tertiary
structure and proteins (over 50 residues) with a substantial
solvent-excluded volume (hydrophobic core). This can be
broadly explained with reference to the different dimensi-
onalities of the free enthalpy hypersurfaces of these three
classes of polymers of amino acids.

Historically, research on peptide and protein structure,
whether by experimental or computational means, has focused
on the folded state only. This is because an array of methods
exists for the detailed investigation of the folded state of a
peptide or protein, and because the folded state is commonly
the functionally active one. There are, however, two scenarios
in which a full characterization of the unfolded state becomes
as essential as the determination of the folded conformation.
The first is in the study of the physical, chemical, or bio-
logical properties of oligopeptides and short polypeptides.
The folded conformation of such peptides is, in general, only
marginally more stable than the lowest free enthalpy unfolded
conformation. Moreover, the unfolded state of a peptide is of-
ten more populated than the folded state. As a result, any mac-
roscopic observable of a peptide is weighted with both the
folded and the unfolded states. Interpreting such observables
in terms of only the folded conformation is, therefore, incor-
rect. The second scenario is related to the study of peptide
and protein folding (to be distinguished from structure predic-
tion). The description of an equilibrium requires knowledge
about each of the states involved. Therefore, it is fundamen-
tal to describe not only the folded state but also the unfolded
state accurately in order to draw conclusions on the nature
and mechanisms of peptide and protein folding.

More recently, some efforts have been made to charac-
terize the unfolded state of specific peptides and proteins
[1–16]. Obtaining quantitative microscopic information from
the unfolded state is difficult not only experimentally but also
computationally. While experiments suffer from the low pop-
ulation and transient nature of individual unfolded conforma-
tions, theoretical studies are bound by the computational time
required to sample the conformations of the unfolded state
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with appropriate weights. In most cases, experimental studies
report on low-resolution average properties of the unfolded
state [4,6,8,13–15] or focus on particular, not always well-
defined substates like, for example, molten globules [17–19],
metastable intermediates [20], or transition states [21–26],
(see also reviews [27–31] and Adv Prot Chem, vol 62 on
Unfolded Proteins). Computationally, sampling the unfolded
state is bound to sampling the equilibrium ensemble of fold-
ing/unfolding pathways. Given the size of the problem, the
challenge is to reduce the number of degrees of freedom of
the model without perturbing its capacity to reproduce the
behavior of the real system. The number of degrees of free-
dom can be kept to a computationally tractable number by
either simplifying the physical model for the protein and/or
its environment [32–43], or limiting the size of the molecular
system to that of atomic-detail models of oligo- and polypep-
tides in solution [44–51]. Alternatively, for an atomic-detail
model of a protein in solution, if the native three-dimensional
structure is known one may construct a projection of the free
enthalpy on particular coordinates using a predefined set of
unfolded conformations and biased-sampling [52], or one
may perform unfolding simulations under denaturing condi-
tions and assume that the sampled pathways are relevant to
folding under native conditions [53]. Arguments in favor and
against each of these simplifying approaches are abundant in
the mentioned literature.

The focus of this paper is on the molecular dynamics
(MD) simulation of oligo- and polypeptide folding with atomic
resolution.

2 1998–2005: Simulation landmarks

Although the simulation of peptide dynamics has already a
long trajectory [54,55], before 1998 it was generally accepted
that the folding of even small oligopeptides forming second-
ary structure elements – helices and hairpins – could not
be tackled with MD simulation methods [56]. Reasons for
this skepticism were the estimated timescales of folding, far
beyond the computationally accessible timescales at the time,
and the general feeling that the empirical force fields and
other approximations intrinsic to MD simulation meant that
this methodology would not be, in the foreseeable future,
applicable to complex phenomena like folding.

Around 1997, however, the groups of van Gunsteren and
Kollman made significant advances with somewhat differ-
ent approaches. In the immediately preceding years, second
generations of the most widely used force fields for biomo-
lecular simulation had been developed [57–60]. In addition,
it had become apparent that the experimentally estimated
folding times depended strongly on the resolution of the
technique used as well as on the model applied to interpret
the data, and that actual folding times could well be shorter
than estimated. Studying the structural properties of a syn-
thetic β-peptide in methanol at different temperatures, Daura
et al. [61] observed, as a matter of chance, the unfolding and
refolding of the experimentally determined left-handed helix

at high temperature in a short simulation. This observation
encouraged the authors to attempt an extensive study of the
conformational behavior of the peptide at a range of temper-
atures over a timescale of 50 ns, an order of magnitude larger
than common simulations of the time [44]. The results of this
study demonstrated, for the first time, that the MD technique
could be used to simulate not only the folding of a peptide but
also the equilibrium between the unfolded and folded states,
with the root mean square difference (RMSD) between the
backbones of the NMR model and the helix populated in the
simulations being as low as 0.02 nm. Certainly, neither the
peptide nor the solvent were biologically relevant, but there
was nothing in the methods or the force field that could make
the folding of anα-peptide in water less tractable, the physical
principles being the same. This was shortly after a demon-
stration by Duan and Kollman [45], who had taken a comple-
mentary approach. They attempted the folding of a 36-resi-
due polypeptide, villin headpiece subdomain, in water with a
phenomenally long (1µs) simulation. The lower bound to the
folding time of this polypeptide had been estimated in 10µs
(current estimates are around 5µs [62]). Nevertheless, the
most populated conformer in the simulation contained many
of the features of the NMR model structure and the authors
suggested that it could correspond to a metastable folding
intermediate. This simulation time record (still the longest
continuous simulation of a polypeptide in explicit solvent
to date) could be achieved thanks to the use of large super-
computing resources, an optimized parallel code developed
by the same authors, and a reduced box size in combination
with a simplified long-range interaction scheme. The papers
by Daura et al. [44] and Duan and Kollman [45] showed that
the simulation of the folding of small proteins with atomic
resolution was not a chimera but, rather, a question of time
[63]. The difficulty to access large supercomputing resources
meant that, in most cases, the study of peptide folding by
MD simulation was approached from extensive simulations
aimed at reproducing the folding/unfolding equilibrium of
small, quick folders (oligopeptides) [46,48,64–66].

In late 1998, a paper by Schaefer et al. [67] opened new
expectations on a long-debated simplifying approach, i.e., the
use of (improved) implicit-solvent representations in biomo-
lecular simulation in general and in peptide folding in partic-
ular. This level of modeling permitted a significant timescale
jump and was quickly adopted by a number of groups study-
ing peptide folding [38,68–72]. (Interestingly, it did not have
a comparable impact on MD simulations of folded proteins.)
In particular, Ferrara et al. [37,73] used this fast approach to
improve folding statistics with multiple long simulations. The
presumed correspondence between implicit- and explicit-sol-
vent thermodynamics and kinetics is, however, a matter of
active discussion [74–83].

In parallel to these developments, two papers prepared
the terrain for two future important lines of work. On the
one hand, Sugita and Okamoto [84] developed a formulation
for replica-exchange MD. This built on the replica [85] and
multicanonical [86] Monte Carlo algorithms, the latter having
been already adapted to MD [87] and later used in peptide
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folding simulations [47]. In replica-exchange MD, system
replicas at different temperatures (over a defined range) are
run simultaneously and independently. Every so many steps,
a pair of replicas at neighboring temperatures are exchanged
with a Metropolis-based probability. The algorithm permits
an efficient sampling of conformational space with appropriate
weights. On the other hand, Voter [88] proposed a paral-
lel-replica MD algorithm for efficient parallelization (mini-
mal communication between nodes) of the simulation of rare
events. A (large) number of replicas are also run in paral-
lel, with different initial conditions (randomized momenta).
When one of the replicas makes a transition to another state,
all the replicas are reset to that state. The algorithm preserves
the right kinetics. The door to (commodity) distributed com-
puting was open.

In 2001, García and Sanbonmatsu [49] applied the rep-
lica-exchange MD algorithm to the study of peptide fold-
ing. Since then, this method and its derivatives [89–92] have
become standards for the study of peptide-folding thermody-
namics, both in explicit- and implicit-solvent environments
[93–97]. Although the method allows a very efficient sam-
pling of conformational space, effectively crossing over bar-
riers, it does not lack inconveniences. Thus, the kinetics are
scrambled by the exchange procedure and, in explicit sol-
vent, efficient exchange requires in general the use of con-
stant volume and a small spacing between temperatures, i.e.,
many replicas. Distinct formalisms, with derivations based
to a varying extent on Markov chains, have been already pro-
posed for the recovery of kinetic information on a system
by reusing a Boltzmann-weighted distribution of states (e.g.,
from replica-exchange simulations) [98–100].

Building on previous efforts to apply large-scale distrib-
uted computing to biomolecular simulation [88,101,102], in
2002 Snow et al. [50] reported a kinetic study of the folding of
a 23-residue polypeptide in implicit solvent by multiple, tens
of thousands, relatively short MD simulations, using parallel-
replica MD. As impressive as it is, this approach is neither
without problems. The thermodynamics of the system are
biased and the ability of the approach to evaluate the folding
kinetics of proteins, as opposed to peptides, has been ques-
tioned [103] (although a kinetic model that could potentially
circumvent this problem has been already proposed [104]).
In addition, the complex infrastructure/logistics required by
this approach means that only one group is actively using it
at the moment [105].

3 A view on peptide folding

Looking at the existing literature, an outsider would eas-
ily conclude that the knowledge on how peptides fold is
extense. A myriad of seemingly consistent conclusions have
been written down, some compatible some not, most of them
defendable but few irrefutable or generalizable. Indeed, there
have been many interpretations of peptide folding on the ba-
sis of experimental and theoretical data, but there is still little
true knowledge. Even when detailed computational models

seem to reproduce accurately the experimental data, offering
a plausible microscopic picture of the process, it is difficult to
interpret the trajectories without introducing yet more models
and assumptions in the analysis.

In the following paragraphs I will treat some aspects of
peptide folding, mostly in connection with our own work. A
significant part of our experience is based on observations
from MD simulations of the reversible folding of non-nat-
ural peptides (especially β-peptides [106]) in non-aqueous
solvents [7,107]. Whether results on these systems can be
extrapolated to natural peptides in water is, of course, ques-
tionable. As a matter of fact, Kritzer et al. [108] have recently
suggested that β-peptide folding might be governed by differ-
ent biophysical forces than α-peptide folding. Finally, note
that protein folding does not necessarily proceed as a simple
extension of peptide folding, and I will only refer to the latter
process.

3.1 The framework

I will start by defining unambiguously, though in some cases
arbitrarily, some terminology. Configuration will be used to
describe a set of distinct coordinates of the atoms of a molec-
ular system. Structure will be used to describe a set of distinct
internal coordinates of the atoms of a peptide. Conformation,
on the other hand, will be used as an abstraction represent-
ing an (in principle infinite) ensemble of structures of a pep-
tide with high structural similarity and identical macroscopic
properties. From these definitions it follows that the config-
urational space (continuous) of a peptide is infinite, while
the conformational space (discrete) is not. The term accessi-
ble conformational space will be based on thermodynamics
rather than kinetics. Thus, it will refer to the space of likely
conformations, conformations with non-zero probability, at
equilibrium.

Consider a peptide in conformational equilibrium. Sup-
pose the peptide is part of a microscopic system in con-
tact with a reservoir at constant temperature and pressure
(exchange of heat and work). The conformational space acces-
sible to the peptide (and its associated probability distribu-
tion) depends on the rest of the system or environment, E,
and the thermodynamic conditions, C. I will call the most
probable conformation of the peptide under E,C the folded
conformation of the peptide. Any other conformers popu-
lated under E,C will be said to be unfolded. Note that this is
irrespective of structural considerations, i.e., the most prob-
able conformer may or may not be recognized as a second-
ary structure element, while there might be lower probability
(unfolded) conformers recognizable as canonical secondary
structures. In addition, the folded conformer is not necessar-
ily unique, as it may change with E,C. The terms state and
free enthalpy (or Gibbs free energy) refer to the system. Thus,
the folded state under C is here defined as the ensemble of
microstates of the system, states with specified atomic coor-
dinates and momenta for all atoms, for which the peptide is
in its folded conformation, while the unfolded state under C
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is defined by all other microstates populated by the system.
Likewise, I may define system states associated to each of the
unfolded conformations of the peptide. For simplicity, I will
use the term conformational state to refer to a system state
associated to a particular conformation of the peptide. Using
this nomenclature, the free enthalpy difference between any
pair AB of states (e.g., free enthalpy of folding if A is the
unfolded state and B the folded state) under C is given by:

�G(C)
AB = −β−1 ln

[
P(C)

B

/
P(C)

A

]
, (1)
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with H (C)
Xi

being the enthalpy of microstate Xi , belonging to
state X , under C. Note that the sum over all conformational
states Y (partition function) in Eq. (2) vanishes in Eq. (1).
Note also that in principle the sums over microstates i, j in
Eq. (2) are integrals over phase space. However, the impossi-
bility to specify a microstate, a point in phase space, with infi-
nite accuracy (theoretically) and precision (computationally)
means that the phase space of the system is, for our purposes,
discrete and we may approach these integrals as sums. The

sum over microstates of the Boltzmann factor e
−βH (C)

Xi is very
hard to estimate, even for a conformational state. Although
only the low enthalpy microstates of X will significantly con-
tribute to the sum, the Boltzmann factor is always positive
and, therefore, we may severely underestimate the sum if any
low free enthalpy microstates are missed. MD simulations
are rather efficient at sampling the low enthalpy microstates,
especially for rapidly relaxing environments like water. How-
ever, if the environment of the peptide contains other slowly
relaxing molecular species, e.g., another peptide, in addition
to the solvent, the estimation of the sum becomes impossi-
ble, as it involves the sampling of the conformational space
accessible to the second peptide under the conditions that the
enthalpy of the corresponding microstates is low and the first
peptide is in the conformation that defines state X . Finally,
the probabilities might be also estimated by population count-
ing from an equilibrium distribution of conformational states.
This is normally the approach used to analyze peptide-folding
thermodynamics from simulation trajectories, the problem
being again the difficulty to sample such equilibrium even
for simple peptide/solvent systems. It has the basic advan-
tage of not requiring any calculation.

For the sake of discussion, I will define yet another con-
formational state: the native state. This will be a system state
associated to the experimentally observable (and biologically
relevant) conformation of the peptide (native conformation),
without consideration of its relative probability. By analogy
to the folded/unfolded pair, I define the denatured state as the
ensemble of populated microstates of the system for which
the peptide is not in the native conformation. As with the

folded conformer, the native conformer of a peptide may not
be unique but will be dependent on E,C. For example, the
native conformation of a peptide may be different in vac-
uum [109–112], in aqueous solution and when inserted in a
membrane.

3.2 Bounds to a conformation

The concept of conformation is necessarily ill-defined. As
an abstraction of a region of the configurational space of
a peptide, it has no natural bounds. Thus, any set of cri-
teria we use to define a conformation will be unavoidably
arbitrary. However, some criteria conform better to the con-
cept than others. In MD simulation studies, the assignment
of sampled structures of a peptide to particular conforma-
tions is in general done through clustering. Clustering algo-
rithms used in the context of peptide folding are diverse in
nature and mathematical complexity. More important than
the algorithm, however, are the descriptors used to deter-
mine whether two structures belong to the same conforma-
tion. The most common descriptors are global measures of
(backbone) structure, e.g., RMSDs of atomic positions [113]
or atomic distances [114], population densities in some type
of projection of the configurational space sampled [115–117],
strings of dihedral angles and associated secondary structure
motifs [118], etc. In some cases, a set of local descriptors
has been used, e.g., particular types of atomic interactions
[69], occasionally in combination with specific energy terms
[119]. An approach to conformation from phase space rather
than configurational space would be desirable. Huisinga et
al. [120], for example, devised a dynamics-based clustering
which characterizes conformations in terms of their meta-
stability with respect to fluctuations. Although an appealing
idea, this type of analysis becomes impractical for large sets.

3.3 Thermodynamics versus kinetics

The most probable state of a system is, by definition (Eq.
(1)), the one with the lowest free enthalpy. An apparently
naive question then rises: is the native state under C the most
probable state under C (i.e., are the states defined here as
native and folded the same)? The answer is not straightfor-
ward. For example, it is common to read (although more in
relation to proteins) that the native conformation of a pep-
tide is the conformation with the lowest free enthalpy from
those which are kinetically accessible. This sentence may
be confusing. First, except for a peptide in vacuum, a pep-
tide conformation does not have an associated free enthalpy.
As already mentioned, free enthalpy is a system property.
Thus, it is the peptide/E system that will (eventually) evolve
toward its lowest free enthalpy state and not the peptide. In
addition, to define the free enthalpy of the system as a func-
tion of, say, the peptide conformation, one must first fix the
thermodynamic conditions (C). Second, we need to intro-
duce the concept of kinetic inaccessibility. If a state is truly
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(thermodynamically) inaccessible it will have zero probabil-
ity and, hence, an infinitely high relative free enthalpy. We
can argue, however, that the average life time of the system
may be shorter than the minimum time it needs to reach its
lowest free enthalpy conformational state and, therefore, a
higher free enthalpy, kinetically more accessible, conforma-
tional state (native state) might be systematically more popu-
lated. In other words, the life time of the system may be much
shorter than its relaxation time, i.e. the time required to reach
an equilibrium distribution of (conformational) states. Thus,
the question reduces to whether natural peptide/E systems are
in equilibrium. From our (maybe still poor) understanding of
the characteristics of free enthalpy landscapes of peptides in
dilute solution (the particular case we are treating here) we
can assume that there are no unsurmountable kinetic barriers
in these landscapes and, therefore, conditions close to equi-
librium may exist for naturally occurring life times. There
is also a practical reason to avoid considering the possibility
of non-equilibrium peptide/E systems: most available for-
malisms to study peptide-folding thermodynamics refer to
equilibrium distributions of states. It does, in fact, make little
sense to talk about probabilities and inaccessible states if the
real system can never sample the conformational space with
appropriate (equilibrium) weights. Hence, I will assume that
what I have defined as folded and native corresponds to the
same conformational state.

3.4 Accessible conformational space

It has been proposed that fast folding, i.e., folding in biolog-
ically relevant timescales, may be achieved thanks to a bias
of the unfolded state toward the folded state [36,121]. This
has been often expressed as a preference of the system for
native contacts. Supposedly, this bias could have been intro-
duced by some evolutionary mechanism. But, what could
this bias be? The answer must be necessarily in the Hamil-
tonian of the system. For example, imagine a peptide/water
microscopic system with the peculiarity that all atoms inter-
act only through a very basic short-range repulsion term that
avoids atomic overlap (in addition to a unique bonding term
for bound atoms). The entire conformational space of the
peptide would be basically accessible, and all the conforma-
tional states of the system would have similar probabilities
(distinguished only entropically). In a landscape like this,
finding a particular conformation and ensuring its stability
during a biologically meaningful time would be a hard task.
The Hamiltonian governing a real peptide/water system is
obviously much more complex than this and it differentially
weights conformational states, effectively reducing the con-
formational space accessible to the peptide. How much is the
space reduced and in which direction (if a specific one) is a
question of active discussion. There are indications that in
the unfolded state the average structural properties of a pep-
tide may be close to those in the folded state [10,114,122].
This is not, however, incompatible with the conformations
of the peptide in the unfolded state being at the same time

structurally diverse (to be distinguished from random), with
many of the populated conformers lacking native contacts
[113,123–125].

Based on simulation studies of the equilibria of non-nat-
ural peptides (mostly) in non-aqueous solvents at different
temperatures, we proposed that the number of conforma-
tional states accessible to a peptide is far, orders of magnitude,
smaller than the number of theoretical conformational states –
states resulting from the consideration of a fixed, e.g., 3, num-
ber of conformers per backbone angle – and that, opposite
to the theoretical space, the accessible space does not grow
exponentially with the length of the peptide [7]. In the pic-
ture that emerged from these simulations, the unfolded state
is heavily dominated by a relatively small number of con-
formational states, and folding occurs, in average, through
a small number of intermediates [107]. We suggested that
there might be a correlation between the number of accessi-
ble (populated) conformational states and the average folding
time [7,126] and, therefore, a conformational landscape like
the one proposed would favor fast folding kinetics. We also
suggested that the average life time of the folded state might
grow faster with the number of residues than the average
folding time, thus making folding a more efficient process
for longer chains [107]. Theoretical and experimental kinetic
data suggest that, for proteins, the scaling of the folding time
with the number of residues (N) is roughly proportional to
eN 1/2

(the proportionality constant being in microseconds)
[127,128]. On the other hand, the minimum folding time for
a single-domain protein would be approximately N/100µs
[129]. The dependence we observe for our reduced set of
peptides is approximately linear in nature, in line with the
latter fast folders (albeit with a different slope) [107]. Some
aspects of our analysis of the accessible conformational space
and its implications on folding have been, however, criticized.
In particular, it has been argued that the average number of
(unfolded) conformational states visited during folding may
be small and the accessible conformational space still grow
exponentially with the length of the peptide [130,131].

Currently, we are analyzing the accessible conformational
spaces of two β-peptides in methanol, at different tempera-
tures, in terms of network theory [132]. The populated con-
formational states are determined by clustering peptide struc-
tures sampled at regular time intervals during the simula-
tion [113]. Each conformational state represents, thereafter,
a node in the graph (network). Links between nodes corre-
spond to bidirectional transitions between the conformational
states (clusters) sampled during the simulation. Preliminary
results from this analysis (R.V. Solé and X. Daura, in pro-
gress) indicate that the accessible conformational spaces of
these peptides have a small-world topological organization
(high clustering, small average path length) with an expo-
nential degree distribution [most clusters can perform tran-
sitions to only one or two other clusters, whereas a few of
them (hubs) have multiple connections]. Similar results have
been recently reported by Rao and Caflisch [133] on a 20-
residue antiparallel β-sheet peptide. This level of organiza-
tion, which agrees with our previous observation of a small
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average number of folding intermediates, explains to a large
degree the fast folding of these so-called foldamers.

3.5 Specific folding energetics

For one of these peptides, the energetics have been ana-
lyzed using classical thermodynamics formulae that relate
free enthalpy and entropy differences over a temperature
range to enthalpies and heat capacities at constant pressure
(X. Daura and W.F. van Gunsteren, in preparation). There
are two aspects of the results which I wish to discuss here.
The first one is that, for the temperature range studied (298–
360 K, with 10 K intervals) the higher the temperature the
more favorable the (system) enthalpy is to folding. Since the
free enthalpy of folding increases with temperature, the en-
tropy must counteract the enthalpy trend. The second refers to
the contribution of different potential energy terms to folding:
internal (peptide) bonding interactions, internal non-bonding
interactions and solvent–solvent interactions favor folding at
all temperatures, while peptide–solvent non-bonding interac-
tions strongly disfavor folding. While this is not unexpected,
it called our attention to the fact that the contribution of sol-
vent–solvent interactions to folding is similar in magnitude to
the contribution of the peptide’s internal non-bonding inter-
actions. It goes without saying that these results may not be
extendable to peptides in water.

4 Outlook

There are three choices implicit in any MD simulation of
peptide folding.

4.1 Type of degrees of freedom

The atomic representation of peptide and environment will
probably take the lead in peptide folding studies in the com-
ing years. Quantum dynamics will be out of question for
a long while, and it is not even clear that quantum effects
(non-accountable classically) may play an important role in
peptide-folding dynamics. Simple models seem, with current
methods and computational performances, an unnecessary
reduction in regard to peptide folding. Implicit-solvent mod-
els, together with an atomic representation of the peptide,
may be used, instead, to explore the long time limit.

4.2 Force field

The force field has been, traditionally, a cause of distrust
in classical MD. Starting with the second-generation force
fields already mentioned, important progress has been made
[134–137]. Long-range interactions (e.g., Ewald-type sums
or reaction field corrections for electrostatics and long-range
cutoffs or corrections for van der Waals) have been, in gen-
eral, already incorporated in the parametrization procedures.

Nevertheless, there is still work for force-field developers
[138–142]. Water models with three interaction sites have
been proven difficult to improve [143]. TIP5P [144,145] is
currently the best water model available, but is somewhat
inconsistent with the peptide description and is computation-
ally expensive. Polarizability has been long claimed to be
the key addition to classical force fields. Although polariz-
able biomolecular force fields already exist [146–149], they
require an additional computational effort and have not yet
shown an unquestionable advantage over current non-polar-
izable ones (even for water).

Half-way between the sampling algorithm and the force
field, pH stands as one of the missing parameters in standard
MD. The pH is usually taken into account in an average way
by fixing the protonation state of the titratable groups accord-
ing to standard pKA values. This is, however, a rather crude
approximation, especially because pH is known to strongly
affect folding. There exist a number of constant-pH algo-
rithms, both for explicit-water [150–152] and implicit-water
[153–155] MD simulations, but their properties have not been
thoroughly investigated yet. In addition, they have an extra
computational cost which has probably contributed to restrict
their range of application so far.

4.3 Sampling of conformational space

Two recently implemented techniques, replica-exchange MD
and parallel-replica MD, permit already the study of fold-
ing thermodynamics and kinetics, respectively, for reason-
ably sized polypeptides. Standard MD is still unique in that
it delivers both types of information for free. Its timescale
limitations are, however, frustratingly obvious. Nevertheless,
ensemble-type simulations – many, very long (for current
standards) simulations – of peptides in explicit solvent may
be within reach in only a few years. The GRID initiatives may
decisively contribute to it (http://gridcafe.web.cern.ch/grid-
cafe/).

Acknowledgements The Spanish MEC/FEDER is acknowledged for
financial support; grant ref. BIO2003-02848. Thanks to R.V. Solé and
W.F. van Gunsteren for letting me discuss unpublished results. Thanks
to W.F. van Gunsteren and his group for their continuous support.

References

1. Shortle D, Simons KT, Baker D (1998) Clustering of low-energy
conformations near the native structures of small proteins. Proc
Natl Acad Sci US Am 95:11158–11162

2. Pappu RV, Srinivasan R, Rose GD (2000) The Flory isolated-pair
hypothesis is not valid for polypeptide chains: implications for
protein folding. Proc Natl Acad Sci US Am 97:12565–12570

3. Wong KB, Clarke J, Bond CJ, Neira JL, Freund SMV, Fersht AR,
Daggett V (2000) Towards a complete description of the structural
and dynamic properties of the denatured state of barnase and the
role of residual structure in folding. J Mol Biol 296:1257–1282

4. Bai YW, Chung J, Dyson HJ, Wright PE (2001) Structural and
dynamic characterization of an unfolded state of poplar apo-
plastocyanin formed under nondenaturing conditions. Protein Sci
10:1056–1066



Molecular dynamics simulation of peptide folding 303

5. Plaxco KW, Gross M (2001) Unfolded, yes, but random? Never!
Nat Struct Biol 8:659–660

6. Shortle D, Ackerman MS (2001) Persistence of native-like topol-
ogy in a denatured protein in 8 M urea. Science 293:487–489

7. van Gunsteren WF, Burgi P, Peter C, Daura X (2001) The key to
solving the protein-folding problem lies in an accurate description
of the denatured state. Angew Chem Int Ed 40:351–355

8. Choy WY, Mulder FAA, Crowhurst KA, Muhandiram DR,
Millett IS, Doniach S, Forman-Kay JD, Kay LE (2002) Distri-
bution of molecular size within an unfolded state ensemble using
small-angle X-ray scattering and pulse field gradient NMR tech-
niques. J Mol Biol 316:101–112

9. Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J,
Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson CM, Schwal-
be H (2002) Long-range interactions within a nonnative protein.
Science 295:1719–1722

10. Zagrovic B, Snow CD, Khaliq S, Shirts MR, Pande VS (2002)
Native-like mean structure in the unfolded ensemble of small pro-
teins. J Mol Biol 323:153–164

11. Lei HX, Smith PE (2003) The role of the unfolded state in hairpin
stability. Biophys J 85:3513–3520

12. Fitzkee NC, Fleming PJ, Gong HP, Panasik N, Street TO, Rose
GD (2005) Are proteins made from a limited parts list? Trends
Biochem Sci 30:73–80

13. Dyer RB, Maness SJ, Franzen S, Fesinmeyer RM, Olsen KA,
Andersen NH (2005) Hairpin folding dynamics: the cold-dena-
tured state is predisposed for rapid refolding. Biochemistry
44:10406–10415

14. Platt GW, McParland VJ, Kalverda AP, Homans SW, Radford SE
(2005) Dynamics in the unfolded state of beta(2)-microglobulin
studied by NMR. J Mol Biol 346:279–294

15. Pletneva EV, Gray HB, Winkler JR (2005) Many faces of the
unfolded state: conformational heterogeneity in denatured yeast
cytochrome c. J Mol Biol 345:855–867

16. Vendruscolo M, Dobson CM (2005) Towards complete descrip-
tions of the free-energy landscapes of proteins. Philos Trans R
Soc Lond A Math Phys Eng Sci 363:433–450

17. Kobayashi T, Ikeguchi M, Sugai S (2000) Molten globule struc-
ture of equine beta-lactoglobulin probed by hydrogen exchange.
J Mol Biol 299:757–770

18. Chakraborty S, Ittah V, Bai P, Luo L, Haas E, Peng ZY (2001)
Structure and dynamics of the alpha-lactalbumin molten globule:
fluorescence studies using proteins containing a single tryptophan
residue. Biochemistry 40:7228–7238

19. Kim YJ, Kim YA, Park N, Son HS, Kim KS, Hahn JH (2005)
Structural characterization of the molten globule state of apo-
myoglobin by limited proteolysis and HPLC-mass spectrometry.
Biochemistry 44:7490–7496

20. Troullier A, Reinstadler D, Dupont Y, Naumann D, Forge V
(2000) Transient non-native secondary structures during the
refolding of alpha-lactalbumin detected by infrared spectroscopy.
Nat Struct Biol 7:78–86

21. Matouschek A, Kellis JT, Serrano L, Fersht AR (1989) Mapping
the transition-state and pathway of protein folding by protein engi-
neering. Nature 340:122–126

22. Fersht AR, Matouschek A, Serrano L (1992) The folding of an
enzyme. 1. Theory of protein engineering analysis of stability and
pathway of protein folding. J Mol Biol 224:771–782

23. Sosnick TR, Dothager RS, Krantz BA (2004) Differences in the
folding transition state of ubiquitin indicated by phi and psi anal-
yses. Proc Natl Acad Sci US Am 101:17377–17382

24. Horng JC, Cho JH, Raleigh DP (2005) Analysis of the pH-depen-
dent folding and stability of histidine point mutants allows char-
acterization of the denatured state and transition state for protein
folding. J Mol Biol 345:163–173

25. Raleigh DP, Plaxco KW (2005) The protein folding transition
state: what are phi-values really telling us? Prot Pept Lett 12:117–
122

26. Tollinger M, Kay LE, Forman-Kay JD (2005) Measuring pKa
values in protein folding transition state ensembles by NMR spec-
troscopy. J Am Chem Soc 127:8904–8905

27. Evans PA, Radford SE (1994) Probing the structure of folding
intermediates. Curr Opin Struct Biol 4:100–106

28. Plaxco KW, Dobson CM (1996) Time-resolved biophysical meth-
ods in the study of protein folding. Curr Opin Struct Biol 6:630–
636

29. Callender RH, Dyer RB, Gilmanshin R, Woodruff WH (1998)
Fast events in protein folding: the time evolution of primary pro-
cesses. Annu Rev Phys Chem 49:173–202

30. Dobson CM, Hore PJ (1998) Kinetic studies of protein folding
using NMR spectroscopy. Nat Struct Biol 5:504–507

31. Dyson HJ, Wright PE (1998) Equilibrium NMR studies of un-
folded and partially folded proteins. Nat Struct Biol 5:499–503

32. Onuchic JN, LutheySchulten Z, Wolynes PG (1997) Theory of
protein folding: the energy landscape perspective. Annu Rev Phys
Chem 48:545–600

33. Chan HS, Dill KA (1998) Protein folding in the landscape per-
spective: Chevron plots and non-Arrhenius kinetics. Proteins-
Struct Funct Genet 30:2–33

34. Thirumalai D, Klimov DK (1999) Deciphering the timescales and
mechanisms of protein folding using minimal off-lattice models.
Curr Opin Struct Biol 9:197–207

35. Derreumaux P (2000) Ab initio polypeptide structure prediction.
Theor Chem Acc 104:1–6

36. Dinner AR, Sali A, Smith LJ, Dobson CM, Karplus M (2000)
Understanding protein folding via free-energy surfaces from the-
ory and experiment. Trends Biochem Sci 25:331–339

37. Ferrara P, Caflisch A (2000) Folding simulations of a three-
stranded antiparallel beta-sheet peptide. Proc Natl Acad Sci US
Am 97:10780–10785

38. Wang HW, Sung SS (2000). Molecular dynamics simulations of
three-strand beta-sheet folding. J Am Chem Soc 122:1999–2009

39. Mirny L, Shakhnovich E (2001) Protein folding theory: from
lattice to all-atom models. Annu Rev Biophys Biomol Struct
30:361–396

40. De Mori GMS, Colombo G, Micheletti C (2005) Study of the
villin headpiece folding dynamics by combining coarse-grained
Monte Carlo evolution and all-atom molecular dynamics. Pro-
teins-Struct Funct Bioinform 58:459–471

41. Ding F, Buldyrev SV, Dokholyan NV (2005) Folding Trp-cage to
NMR resolution native structure using a coarse-grained protein
model. Biophys J 88:147–155

42. Irback A, Mohanty S (2005) Folding thermodynamics of peptides.
Biophys J 88:1560–1569

43. Liwo A, Khalili M, Scheraga HA (2005) Ab initio simulations of
protein-folding pathways by molecular dynamics with the united-
residue model of polypeptide chains. Proc Natl Acad Sci US Am
102:2362–2367

44. Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1998)
Reversible peptide folding in solution by molecular dynamics
simulation. J Mol Biol 280:925–932

45. Duan Y, Kollman PA (1998) Pathways to a protein folding inter-
mediate observed in a 1-microsecond simulation in aqueous solu-
tion. Science 282:740–744

46. Takano M, Yamato T, Higo J, Suyama A, Nagayama K (1999)
Molecular dynamics of a 15-residue poly(L-alanine) in water:
helix formation and energetics. J Am Chem Soc 121:605–612

47. Higo J, Galzitskaya OV, Ono S, Nakamura H (2001) Energy land-
scape of a beta-hairpin peptide in explicit water studied by mul-
ticanonical molecular dynamics. Chem Phys Lett 337:169–175

48. Hummer G, Garcia AE, Garde S (2001) Helix nucleation kinet-
ics from molecular simulations in explicit solvent. Proteins-Struct
Funct Genet 42:77–84

49. Garcia AE, Sanbonmatsu KY (2001) Exploring the energy land-
scape of a beta hairpin in explicit solvent. Proteins-Struct Funct
Genet 42:345–354

50. Snow CD, Nguyen N, Pande VS, Gruebele M (2002) Abso-
lute comparison of simulated and experimental protein-folding
dynamics. Nature 420:102–106

51. Colombo G, De Mori GMS, Roccatano D (2003) Interplay
between hydrophobic cluster and loop propensity in beta-hairpin
formation: a mechanistic study. Protein Sci 12:538–550



304 X. Daura

52. Shea JE, Brooks CL (2001) From folding theories to folding pro-
teins: a review and assessment of simulation studies of protein
folding and unfolding. Annu Rev Phys Chem 52:499–535

53. Daggett V (2002) Molecular dynamics simulations of the protein
unfolding/folding reaction. Acc Chem Res 35:422–429

54. Daggett V, Kollman PA, Kuntz ID (1991) A molecular-dynamics
simulation of polyalanine – an analysis of equilibrium motions
and helix coil transitions. Biopolymers 31:1115–1134

55. Tobias DJ, Mertz JE, Brooks CL (1991) Nanosecond time scale
folding dynamics of a pentapeptide in water. Biochemistry 30:
6054–6058

56. Shakhnovich EI (1997) Theoretical studies of protein-folding
thermodynamics and kinetics. Curr Opin Struct Biol 7:29–40

57. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson
DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A
2nd generation force-field for the simulation of proteins, nucleic-
acids, and organic-molecules. J Am Chem Soc 117:5179–5197

58. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development
and testing of the OPLS all-atom force field on conformational
energetics and properties of organic liquids. J Am Chem Soc
118:11225–11236

59. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck
JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCar-
thy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S,
Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenk-
rich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-
Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential
for molecular modeling and dynamics studies of proteins. J Phys
Chem B 102:3586–3616

60. Daura X, Mark AE, van Gunsteren WF (1998) Parametrization of
aliphatic CHn united atoms of GROMOS96 force field. J Comput
Chem 19:535–547

61. Daura X, vanGunsteren WF, Rigo D, Jaun B, Seebach D (1997)
Studying the stability of a helical beta-heptapeptide by molecular
dynamics simulations. Chem Eur J 3:1410–1417

62. Kubelka J, Eaton WA, Hofrichter J (2003) Experimental tests of
villin subdomain folding simulations. J Mol Biol 329:625–630

63. Berendsen HJC (1998) Protein folding – a glimpse of the holy
grail? Science 282:642–643

64. Chipot C, Pohorille A (1998) Folding and translocation of the
undecamer of poly-L-leucine across the water-hexane interface:
a molecular dynamics study. J Am Chem Soc 120:11912–11924

65. Bonvin A, van Gunsteren WF (2000) beta-Hairpin stability and
folding: molecular dynamics studies of the first beta-hairpin of
tendamistat. J Mol Biol 296:255–268

66. Colombo G, Roccatano D, Mark AE (2002) Folding and stability
of the three-stranded beta-sheet peptide betanova: insights from
molecular dynamics simulations. Proteins-Struct Funct Genet
46:380–392

67. Schaefer M, Bartels C, Karplus M (1998) Solution conformations
and thermodynamics of structured peptides: molecular dynamics
simulation with an implicit solvation model. J Mol Biol 284:835–
848

68. Lazaridis T, Karplus M (1999) Effective energy function for pro-
teins in solution. Proteins-Struct Funct Genet 35:133–152

69. Dinner AR, Lazaridis T, Karplus M (1999) Understanding beta-
hairpin formation. Proc Natl Acad Sci US Am 96:9068–9073

70. Ferrara P, Apostolakis J, Caflisch A (2002) Evaluation of a fast
implicit solvent model for molecular dynamics simulations. Pro-
teins-Struct Funct Genet 46:24–33

71. Simmerling C, Strockbine B, Roitberg AE (2002) All-atom struc-
ture prediction and folding simulations of a stable protein. J Am
Chem Soc 124:11258–11259

72. Feig M, Brooks CL (2004) Recent advances in the development
and application of implicit solvent models in biomolecule simu-
lations. Curr Opin Struct Biol 14:217–224

73. Ferrara P, Apostolakis J, Caflisch A (2000) Thermodynamics and
kinetics of folding of two model peptides investigated by molec-
ular dynamics simulations. J Phys Chem B 104:5000–5010

74. Bursulaya BD, Brooks CL (2000) Comparative study of the fold-
ing free energy landscape of a three-stranded beta-sheet pro-
tein with explicit and implicit solvent models. J Phys Chem B
104:12378–12383

75. Schafer H, Daura X, Mark AE, van Gunsteren WF (2001) Entropy
calculations on a reversibly folding peptide: changes in solute
free energy cannot explain folding behavior. Proteins-Struct Funct
Genet 43:45– 56

76. Shen MY, Freed KF (2002) Long time dynamics of met-enkeph-
alin: comparison of explicit and implicit solvent models. Biophys
J 82:1791–1808

77. Zhou RH, Berne BJ (2002) Can a continuum solvent model repro-
duce the free energy landscape of a beta-hairpin folding in water?
Proc Natl Acad Sci US Am 99:12777–12782

78. Nymeyer H, Garcia AE (2003) Simulation of the folding equilib-
rium of alpha-helical peptides: a comparison of the generalized
born approximation with explicit solvent. Proc Natl Acad Sci US
Am 100:13934–13939

79. Zhou RH (2003) Free energy landscape of protein folding in
water: explicit vs. implicit solvent. Proteins-Struct Funct Genet
53:148–161

80. Rhee YM, Sorin EJ, Jayachandran G, Lindahl E, Pande VS (2004)
Simulations of the role of water in the protein-folding mechanism.
Proc Natl Acad Sci US Am 101:6456–6461

81. Stultz CM (2004) An assessment of potential of mean force calcu-
lations with implicit solvent models. J Phys Chem B 108:16525–
16532

82. Wagoner J, Baker NA (2004) Solvation forces on biomolecular
structures: a comparison of explicit solvent and Poisson–Boltz-
mann models. J Comput Chem 25:1623–1629

83. Snow CD, Sorin EJ, Rhee YM, Pande VS (2005) How well can
simulation predict protein folding kinetics and thermodynamics?
Annu Rev Biophys Biomol Struct 34:43–69

84. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynam-
ics method for protein folding. Chem Phys Lett 314:141–151

85. Swendsen RH, Wang JS (1986) Replica Monte-Carlo simulation
of spin-glasses. Phys Rev Lett 57:2607–2609

86. Berg BA, Neuhaus T (1991) Multicanonical algorithms for 1st
order phase-transitions. Phys Lett B 267:249–253

87. Nakajima N, Nakamura H, Kidera A (1997) Multicanonical
ensemble generated by molecular dynamics simulation for en-
hanced conformational sampling of peptides. J Phys Chem B
101:817–824

88. Voter AF (1998) Parallel replica method for dynamics of infre-
quent events. Phys Rev B 57:R13985–R13988

89. Sugita Y, Okamoto Y (2000) Replica-exchange multicanonical
algorithm and multicanonical replica-exchange method for sim-
ulating systems with rough energy landscape. Chem Phys Lett
329:261–270

90. Rhee YM, Pande VS (2003) Multiplexed-replica exchange molec-
ular dynamics method for protein folding simulation. Biophys J
84:775–786

91. Paschek D, Garcia AE (2004) Reversible temperature and pres-
sure denaturation of a protein fragment: a replica exchange molec-
ular dynamics simulation study. Phys Rev Lett 93(23):238105

92. Affentranger R, Tavernelli I, Di Iorio EE (2005) A novel Hamil-
tonian replica exchange MD protocol to enhance protein confor-
mational space sampling. (submitted)

93. Zhou RH, Berne BJ, Germain R (2001) The free energy landscape
for beta hairpin folding in explicit water. Proc Natl Acad Sci US
Am 98:14931–14936

94. Garcia AE, Onuchic JN (2003) Folding a protein in a computer:
an atomic description of the folding/unfolding of protein A. Proc
Natl Acad Sci US Am 100:13898–13903

95. Pitera JW, Swope W (2003) Understanding folding and design:
Replica-exchange simulations of “Trp-cage” fly miniproteins.
Proc Natl Acad Sci US Am 100:7587–7592

96. Rao F, Caflisch A (2003) Replica exchange molecular dynamics
simulations of reversible folding. J Chem Phys 119:4035–4042



Molecular dynamics simulation of peptide folding 305

97. Ohkubo YZ, Brooks CL (2003) Exploring Flory’s isolated-pair
hypothesis: statistical mechanics of helix-coil transitions in poly-
alanine and the C-peptide from RNase A. Proc Natl Acad Sci US
Am 100:13916–13921

98. Swope WC, Pitera JW, Suits F (2004) Describing protein folding
kinetics by molecular dynamics simulations. 1. Theory. J Phys
Chem B 108:6571–6581

99. Swope WC, Pitera JW, Suits F, Pitman M, Eleftheriou M, Fitch
BG, Germain RS, Rayshubski A, Ward TJC, Zhestkov Y, Zhou R
(2004) Describing protein folding kinetics by molecular dynam-
ics simulations. 2. Example applications to alanine dipeptide and
beta-hairpin peptide. J Phys Chem B 108:6582–6594

100. Andrec M, Felts AK, Gallicchio E, Levy RM (2005) Protein fold-
ing pathways from replica exchange simulations and a kinetic
network model. Proc Natl Acad Sci US Am 102:6801–6806

101. Shirts M, Pande VS (2000) Computing – screen savers of the
World unite! Science 290:1903–1904

102. Shirts MR, Pande VS (2001) Mathematical analysis of coupled
parallel simulations. Phys Rev Lett 86:4983–4987

103. Fersht AR (2002) On the simulation of protein folding by short
time scale molecular dynamics and distributed computing. Proc
Natl Acad Sci US Am 99:14122–14125

104. Singhal N, Snow CD, Pande VS (2004) Using path sampling to
build better Markovian state models: predicting the folding rate
and mechanism of a tryptophan zipper beta hairpin. J Chem Phys
121:415–425

105. Pande VS, Baker I, Chapman J, Elmer SP, Khaliq S, Larson
SM, Rhee YM, Shirts MR, Snow CD, Sorin EJ, Zagrovic B
(2003) Atomistic protein folding simulations on the submillisec-
ond time scale using worldwide distributed computing. Biopoly-
mers 68:91–109

106. Seebach D, Beck AK, Bierbaum DJ (2004) The world of beta- and
gamma-peptides comprised of homologated proteinogenic amino
acids and other components. Chem Biodivers 1:1111–1239

107. Daura X, Glattli A, Gee P, Peter C, Van Gunsteren WF (2002)
Unfolded state of peptides. Adv Prot Chem 62:341–360

108. Kritzer JA, Tirado-Rives J, Hart SA, Lear JD, Jorgensen WL,
Schepartz A (2005) Relationship between side chain structure
and 14-helix stability of beta(3)-peptides in water. J Am Chem
Soc 127:167–178

109. Wolynes PG (1995) Biomolecular folding in vacuo!!!? Proc Natl
Acad Sci US Am 92:2426–2427

110. Daura X, Mark AE, van Gunsteren WF (1999) Peptide folding
simulations: no solvent required? Comput Phys Commun 123:97–
102

111. Velazquez I, Reimann CT, Tapia O (1999) Proteins in vacuo:
relaxation of unfolded lysozyme leads to folding into native and
non-native structures. A molecular dynamics study. J Am Chem
Soc 121:11468–11477

112. Levy Y, Jortner J, Becker OM (2001) Solvent effects on the energy
landscapes and folding kinetics of polyalanine. Proc Natl Acad
Sci US Am 98:2188–2193

113. Daura X, van Gunsteren WF, Mark AE (1999) Folding-unfolding
thermodynamics of a beta-heptapeptide from equilibrium simu-
lations. Proteins-Struct Funct Genet 34:269–280

114. Zagrovic B, Pande VS (2004) How does averaging affect protein
structure comparison on the ensemble level? Biophys J 87:2240–
2246

115. de Groot BL, Daura X, Mark AE, Grubmuller H (2001) Essential
dynamics of reversible peptide folding: memory-free conforma-
tional dynamics governed by internal hydrogen bonds. J Mol Biol
309:299–313

116. Hamprecht FA, Peter C, Daura X, Thiel W, van Gunsteren WF
(2001) A strategy for analysis of (molecular) equilibrium simu-
lations: Configuration space density estimation, clustering, and
visualization. J Chem Phys 114:2079–2089

117. Ikeda K, Galzitskaya OV, Nakamura H, Higo J (2003) beta-hair-
pins, alpha-helices, and the intermediates among the secondary
structures in the energy landscape of a peptide from a distal beta-
Hairpin of SH3 domain. J Comput Chem 24:310–318

118. Corcho FJ, Canto J, Perez JJ (2004) Comparative analysis of the
conformational profile of substance P using simulated annealing
and molecular dynamics. J Comput Chem 25:1937–1952

119. Bursulaya BD, Brooks CL (1999) Folding free energy surface of
a three-stranded beta-sheet protein. J Am Chem Soc 121:9947–
9951

120. Huisinga W, Best C, Roitzsch R, Schutte C, Cordes F (1999)
From simulation data to conformational ensembles: structure and
dynamics-based methods. J Comput Chem 20:1760–1774

121. Onuchic JN, Wolynes PG (2004) Theory of protein folding. Curr
Opin Struct Biol 14:70–75

122. Daura X, Antes I, van Gunsteren WF, Thiel W, Mark AE
(1999) The effect of motional averaging on the calculation of
NMR-derived structural properties. Proteins-Struct Funct Genet
36:542–555

123. Cardenas AE, Elber R (2003) Kinetics of cytochrome C fold-
ing: atomically detailed simulations. Proteins-Struct Funct Genet
51:245–257

124. Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM, Cingel N,
Dothager RS, Seifert S, Thiyagarajan P, Sosnick TR, Hasan MZ,
Pande VS, Ruczinski I, Doniach S, Plaxco KW (2004) Random-
coil behavior and the dimensions of chemically unfolded proteins.
Proc Natl Acad Sci US Am 101:12491–12496

125. Wei GH, Mousseau N, Derreumaux P (2004) Complex folding
pathways in a simple beta-hairpin. Proteins-Struct Funct Bioin-
form 56:464–474

126. van Gunsteren WF, Burgi R, Peter C, Daura X (2001) Comment
on the communication “The key to solving the protein-folding
problem lies in an accurate description of the denatured state” by
van gunsteren et al. – reply. Angew Chem Int Ed 40:4616–4618

127. Li MS, Klimov DK, Thirumalai D (2004) Thermal denaturation
and folding rates of single domain proteins: size matters. Polymer
45:573–579

128. Naganathan AN, Munoz V (2005) Scaling of folding times with
protein size. J Am Chem Soc 127:480–481

129. Kubelka J, Hofrichter J, Eaton WA (2004) The protein folding
‘speed limit’. Curr Opin Struct Biol 14:76–88

130. Dinner AR, Karplus M (2001) Comment on the communication
“The key to solving the protein-folding problem lies in an accu-
rate description of the denatured state” by van gunsteren et al.
Angew Chem Int Ed 40:4615–4616

131. Cavalli A, Haberthur U, Paci E, Caflisch A (2003) Fast protein
folding on downhill energy landscape. Protein Sci 12:1801–1803

132. Strogatz SH (2001) Exploring complex networks. Nature 410:
268–276

133. Rao F, Caflisch A (2004) The protein folding network. J Mol Biol
342:299–306

134. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL
(2001). Evaluation and reparametrization of the OPLS-AA force
field for proteins via comparison with accurate quantum chemical
calculations on peptides. J Phys Chem B 105:6474–6487

135. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W,
Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P
(2003) A point-charge force field for molecular mechanics simu-
lations of proteins based on condensed-phase quantum mechani-
cal calculations. J Comput Chem 24:1999–2012

136. Mackerell AD (2004) Empirical force fields for biological macro-
molecules: overview and issues. J Comput Chem 25:1584–1604

137. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A
biomolecular force field based on the free enthalpy of hydration
and solvation: the GROMOS force-field parameter sets 53A5 and
53A6. J Comput Chem 25:1656–1676

138. Hu H, Elstner M, Hermans J (2003) Comparison of a QM/MM
force field and molecular mechanics force fields in simulations
of alanine and glycine “dipeptides” (Ace-Ala-Nme and Ace-Gly-
Nme) in water in relation to the problem of modeling the un-
folded peptide backbone in solution. Proteins-Struct Funct Genet
50:451–463

139. Mu YG, Kosov DS, Stock G (2003) Conformational dynamics of
trialanine in water. 2. Comparison of AMBER, CHARMM, GRO-
MOS, and OPLS force fields to NMR and infrared experiments.
J Phys Chem B 107:5064–5073



306 X. Daura

140. Okur A, Strockbine B, Hornak V, Simmerling C (2003) Using PC
clusters to evaluate the transferability of molecular mechanics
force fields for proteins. J Comput Chem 24:21–31

141. Gnanakaran S, Garcia AE (2005) Helix-coil transition of alanine
peptides in water: force field dependence on the folded and un-
folded structures. Proteins-Struct Funct Bioinform 59:773–782

142. Sorin EJ, Pande VS (2005) Empirical force-field assessment: the
interplay between backbone torsions and noncovalent term scal-
ing. J Comput Chem 26:682–690

143. Glattli A, Daura X, van Gunsteren WF (2002) Derivation of an
improved simple point charge model for liquid water: SPC/A and
SPC/L. J Chem Phys 116:9811–9828

144. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid
water and the reproduction of the density anomaly by rigid, non-
polarizable potential functions. J Chem Phys 112:8910–8922

145. Rick SW (2004) A reoptimization of the five-site water potential
(TIP5P) for use with Ewald sums. J Chem Phys 120:6085–6093

146. Cieplak P, Caldwell J, Kollman P (2001) Molecular mechani-
cal models for organic and biological systems going beyond the
atom centered two body additive approximation: aqueous solu-
tion free energies of methanol and N-methyl acetamide, nucleic
acid base, and amide hydrogen bonding and chloroform/water
partition coefficients of the nucleic acid bases. J Comput Chem
22:1048–1057

147. Kaminski GA, Stern HA, Berne BJ, Friesner RA (2004) Develop-
ment of an accurate and robust polarizable molecular mechanics
force field from ab initio quantum chemistry. J Phys Chem A
108:621–627

148. Patel S, Brooks CL (2004) CHARMM fluctuating charge force
field for proteins: I parameterization and application to bulk
organic liquid simulations. J Comput Chem 25:1–15

149. Patel S, Mackerell AD, Brooks CL (2004) CHARMM fluctuating
charge force field for proteins: II – Protein/solvent properties from
molecular dynamics simulations using a nonadditive electrostatic
model. J Comput Chem 25:1504–1514

150. Borjesson U, Hunenberger PH (2001) Explicit-solvent molecular
dynamics simulation at constant pH: methodology and applica-
tion to small amines. J Chem Phys 114:9706–9719

151. Baptista AM, Teixeira VH, Soares CM (2002) Constant-pH
molecular dynamics using stochastic titration. J Chem Phys
117:4184–4200

152. Burgi R, Kollman PA, van Gunsteren WF (2002) Simulating pro-
teins at constant pH: an approach combining molecular dynamics
and Monte Carlo simulation. Proteins-Struct Funct Genet 47:469–
480

153. Dlugosz M, Antosiewicz JM (2004) Constant-pH molecular
dynamics simulations: a test case of succinic acid. Chem Phys
302:161–170

154. Lee MS, Salsbury FR, Brooks CL (2004) Constant-pH molecular
dynamics using continuous titration coordinates. Proteins-Struct
Funct Bioinform 56:738–752

155. Mongan J, Case DA, McCammon JA (2004) Constant pH molecu-
lar dynamics in generalized born implicit solvent. J Comput Chem
25:2038–2048


